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ABSTRACT
We introduce the Collection Space Navigator (CSN), a browser-
based visualization tool to explore, research, and curate large collec-
tions of visual digital artifacts that are associated with multidimen-
sional data, such as vector embeddings or tables of metadata. Media
objects such as images are often encoded as numerical vectors,
based on metadata or using machine learning embeddings. Yet it
remains a challenge to explore, analyze, and understand the result-
ing multidimensional spaces. Dimensionality reduction techniques
such as t-SNE or UMAP often serve to project high-dimensional
data into low dimensional visualizations, but require interpretation
themselves given their typically abstract dimensions. The Collection
Space Navigator provides a customizable interface that combines
two-dimensional projections with an array of configurable multi-
functional filters and navigation controls. The user is able to view
and investigate collections by zooming and scaling, transforming
between projections, and filtering dimensions via range sliders and
text filters. Insights gained through these interactions can be used
to augment original data via easy to use export capabilities. This
paper comes with a functional online demo showcasing a large
digitized collection of classical Western art. Users can reconfigure
the interface to fit their own data and research needs, including
projections and filter controls. This open source tool is intended to
be applicable in a broad range of use cases, types of collections and
across diverse disciplines.

CCS CONCEPTS
• Human-centered computing→ Visual analytics; Informa-
tion visualization; Visualization toolkits.
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1 INTRODUCTION
Large collections of digital artifacts and associated metadata can
be effectively studied using browsable interactive visualizations
that reflect and resonate with the intrinsic shape of their data [20].
Mapping the topology of a collection into a multidimensional space
can help to better understand the overall structure of a dataset and
can uncover patterns hinting at underlying trends and dynamics.
For example, a researcher or curator may visually explore the space,
as constituted by some measure of artifact similarity, looking at
different groups of similar objects to identify regions of interest for
further quantitative and qualitative investigation.

Multidimensional feature vectors can be used to further describe
artifact properties. This can include both categorical and numerical
information. Numerical properties can be derived directly from
metadata, such as in the case of artifact creation dates, or con-
structed through various feature extraction techniques. Neural net-
work methods, for example, can encode measures of complex text
semantics [8], of visual image properties [12, 15, 16, 33], of joint
image-text pair embeddings [27, 29, 35], or of spectral audio fea-
tures [28]. Hand-crafted feature engineering approaches [41] and
algorithmic approaches such as compression ensembles [14] offer
interpretable vector representations. Visualizing and exploring pat-
terns in metadata such as artwork creation or acquisition dates can
also be informative on its own [36].

Dimensionality reduction techniques can be used to reduce high-
dimensional data to a more manageable number of dimensions
by remapping or projecting the multidimensional topology into
a lower-dimensional coordinate space [2, 22, 24, 37, 38]. For vi-
sual interpretation of multidimensional embedding spaces, such
projection methods are used to present the data in two or three
dimensions, which essentially can function as a reference topog-
raphy of the original high-dimensional topology. The challenge
for dimensionality reduction techniques is to preserve complex
relationships, while necessarily compressing information: objects
close to each other in the original space should ideally also be close
in the low-dimensional topographic projection space.
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Figure 1: The Collection Space Navigator (CSN). The central Projection Area displays a x-y scatter plot of images based on
the selected projection (e.g. UMAP, t-SNE), with filtered images greyed out, and mouse-over highlight. The Object Panel (left)
shows a larger Object Preview of the highlighted image, together with Object Info based on selected metadata; Object Appearance
visualizes clusters (optional), sets the projection thumbnail size (zoomed-out and zoomed-in). The Control Panel (right) allows
for selection of Data and Projections; custom interactive Dimension Filters and Advanced Filters facilitate dataset exploration,
analysis, and understanding (see text); the filtered object metadata and current projection view can be downloaded via Export
Filtered Data.

Multiple projection views can help to better understand multidi-
mensional data [2]. Two-dimensional static projections are visually
comprehensible, but can only provide a limited view into multidi-
mensional data. To gain intuition over a high-dimensional vector
space, it can be helpful to interpret and compare many different
projections. Interactive components in graphical user interfaces
(GUI) can further help to gain intuition over the complex inter-
actions between many dimensions. GUI elements such as range
sliders are particularly useful to navigate through multiple features
and dimensions, and to query and filter the data [1, 40].

2 RELATEDWORK
Several interactive visualization experiments and prototypes have
emerged in recent years which mediate high-dimensional embed-
dings through low-dimensional projections. Their focus vary: some
aim to provide an intuitive understanding of multidimensionality
and embedding methods by visualizing datasets commonly used for
Machine Learning tasks [7, 13, 17, 34], or offer explorative interfaces

to similarity spaces of cultural collections [9–11, 42]. These interac-
tive visualization projects aim to provide overview and deeper in-
sight into their collections, tailored to specific datasets. The VIKUS
Viewer [25, 26] offers a more general framework for exploring
cultural collections. It allows not only to view a collection as a
similarity map of its image embeddings, but also to dynamically
filter metadata such as time and categories. The Selfiexploratory of
the Selfiecity project [21] similarly uses a number of range sliders
to filter a multidimensional image dataset.

The CSN user interface aligns with classic conventions of cul-
tural cartography and scholarly figure design, using a cartesian
projection with an auxiliary index and call-out details [23]. It com-
bines this with the modern paradigm of interactive figure design
[5, 39], allowing for a deeper functional user experience (UX) and
understanding of multidimensional data. The navigation paradigm
of the CSN range sliders, which function as Dimension Filters, fur-
ther resonates with the recent state-of-the-art of understanding
mathematical multidimensionality via interactive animation [30].
The CSN combines these foundations with the paradigm of a scatter
plot of images [19]. The CSN is also functionally similar to network
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visualization applications, such as Cytoscape [31], Helios Web [32]
or Gephi [3], which focus on depicting another (yet related) form
of multidimensionality in node-link diagrams of complex networks
[6].

Relatedly, the authors of the TensorFlow Embedding Projector
[34] suggest to include multipanel projections, i.e. more than one
simultaneous projection panel. This would also make sense as a
possible extension of the CSN and would be in line with the preva-
lence of “multi-chart" figure panels in multidisciplinary science
journals [4, 18].

3 THE COLLECTION SPACE NAVIGATOR
3.1 Motivation
We developed the CSN as a flexible browser-based research tool
applicable across various use cases and research domains:

(1) Researching large collections of digital objects (e.g. images,
videos, audio, text, 3D models) with the ability to identify
patterns and similar groups based on metadata and vector
embeddings;

(2) Understanding multidimensionality and projection methods
by comparing different embedding spaces and dimensional-
ity reduction techniques through intuitive navigation;

(3) Presenting entire media collections online and communicat-
ing research findings with diverse audiences.

While prototypes and use cases exist for each of these aspects as
discussed above, we are not aware of a tool that meets all of these
requirements. Our contribution therefore lies in the combination
and extension of existing interfaces to work towards a more uni-
versal, cross-platform, open modular research and curation system.
It is highly optimized and capable of displaying large collections of
hundreds of thousands of artifacts even on consumer hardware.

3.2 Design principles
To make complex interactions in multifaceted datasets comprehen-
sible while meeting the diverse needs of users such as researchers
and curators, we formulated three design principles for the tool:

(1) Providing an open modular system that adapts to different
research needs, domains and datasets while preventing in-
formation overload;

(2) Providing a complete overview of the collection while en-
couraging immersive exploration of the objects;

(3) Providing a multitude of interaction mechanisms and modal-
ities to foster intuition, such as zooming, panning, hovering,
and sliding through feature dimensions.

3.3 Components
3.3.1 Projection Area. The central part of the interface is the Pro-
jection Area (Figure 1 center). It maps the given input collection in
its entirety as miniature images in an interactive 2D scatter plot,
with coordinates defined by the chosen projection method (Figure
2). Basic navigation operations such as zooming or “drag and move"
allow free exploration of the projection space. While the user sees
only 2 dimensions in the central projection area, the CSN techni-
cally includes a third axis for depth. Moving along the depth axis (by

Figure 2: Examples of various 2D projections and visualiza-
tion features in the CSN tool. a) UMAP projection with large
thumbnails, providing a comprehensive view of the image
content; b) UMAP projection with medium size thumbnails
and cluster colors of categorical data selected in Object Ap-
pearance; c) UMAP projection with medium size thumbnails
and filtered-out objects in grey; d) UMAP projection with
small thumbnails and cluster colors, providing a more com-
pact representation; e) t-SNE projection, showing an alterna-
tive dimensionality reduction technique; f) Simple x/y plot,
here showing a principal component over time for tempo-
ral analysis. This flexible tool enables effective explorations
and comparison of data across different visualization meth-
ods via multiple different 2D projections. These are flexible
and based on data import configuration, selectable in Data
& Projections. Thumbnail size and cluster highlights can be
simultaneously adjusted via the Object View Settings.

zooming) effectively reveals overlapping objects. The appearance
of the thumbnails can be adjusted in the Object Panel.

3.3.2 Object Panel. The Object Panel (Figure 1 left) has three col-
lapsible sub-menus: Object Preview, Object Info and Object Appear-
ance. The Object Preview section displays a larger version of the
miniature thumbnail currently hovered on in the Projection Area. By
default it simply shows a larger version of the same thumbnail, but
it can be set to display a higher resolution version of the hovered
image, stored either locally or remotely.

The Object Info section provides detailed information on the
currently selected object. This aspect of the CSN is highly flexible,
as the metadata fields that provide this information can be easily
defined in the separate configuration file. Minimally it can display
just the file name, but it can equally well include extensive metadata
— for example in the case of art collections, the author, production
year, location, genre, style, and other details.

The Object Appearance section contains options to control the
visual appearance of the objects in the Projection Area. A predefined
group (from categorical metadata) can be selected from a drop-down
list to show clusters. Objects of the same category are depicted with
the same color border around their thumbnails. The size and scale
of the thumbnail images are adjustable with convenient sliders. Size



VINCI 2023, September 22–24, 2023, Guangzhou, China Ohm et al.

Figure 3: Interactive Dimension Filters. Left: Unfiltered Di-
mension Filters, consisting of range sliders with interactive
histograms above them, showing the distribution of all ob-
jects along the slider’s dimension with the bin of the cur-
rently selected object highlighted in red. Center: reducing the
range of one slider affects the distribution of all dimensions,
reflected by the histograms. Right: Bin Mode functionality is
activated by clicking on a histogram, allowing the user to ac-
tivate one bin at a time, with the Projection Area displaying
the corresponding objects within the active bin. These inter-
active Dimension Filter features allow in-depth exploration
and visualization of multi-dimensional data distributions to
gain a deeper understanding of the relationships between
data points.

determines how large the thumbnails should be when fully zoomed
out, while Scale affects the size when zoomed in.

3.3.3 Control Panel. The Control Panel (Figure 1 right) has four col-
lapsible sub-menus: Data & Projections, Dimension Filters, Advanced
Filters, and Export Filtered Data. The Data & Projections section con-
tains a Dataset drop-down list of selectable datasets. For very large
collections, we recommend providing a smaller subset by default
and offering the entire set on demand (such subsets can be conve-
niently produced using the CSN configuration Python notebook).
The section also contains a Projection drop-down list of selectable
projections and mappings. Switching between different projections,
e.g. different embedding or reductionmethods, smoothly rearranges
the positions of the objects in the Projection Area. These intuitive
animations can provide new insights into the intermediate state
between two projections and expose their differences.

The Dimension Filters are optional interactive elements that func-
tion to filter the objects in the Projection Panel (Figure 3). They con-
trol the range of the assigned variables, which could be dimensions
of the embedding, metadata such as date or year of creation of an
artwork, or inferred properties of the image such as colorfulness
or contrast. Histograms above the range sliders provide additional
statistical information and feedback on how changes affect the dis-
tribution of the mapping. They are constantly updated to reflect
the distribution of the entire dataset as well as the distribution of
filtered and unfiltered objects. Clicking on a histogram activates
the Bin Mode: moving the cursor over the bars of the histogram
temporarily displays only objects within the narrow range of the
bar. A second click terminates this function and sets the filters back
to the previous state. Additionally, hovering over the thumbnails

in the Projection Area highlights the corresponding vertical bar in
each histogram.

The Advanced Filters section is a text field to construct and apply
search and filter queries. By default, it handles basic query oper-
ators such as AND, OR, equals (==), does not equal (!=), as well as
custom operators. Nested and complex search queries are also sup-
ported using round brackets. When setting up the CSN for a new
collection, using the configuration file (in Jupyter notebook format),
each metadata field can be defined as a Free Text Entry (enabling
queries) or as a Categorical Selection (generating drop-down lists,
i.e. GUI elements that allow simple search and selection). The Ex-
port Filtered Data section in the Control Panel allows downloading
the metadata of the currently filtered objects as a CSV file, and the
current projection view as PNG file.

4 CONCLUSION
The CSN is a flexible and powerful tool for visualizing large multi-
dimensional datasets, including embedding vectors and metadata.
Available publicly on Github, the CSN includes a demo and a usage
guide via an interactive Jupyter notebook. It’s adaptable to a range
of research and data needs, supporting various vector types, meta-
data, projection methods, and representations, in a user-friendly
interface. Though we demonstrate CSN using visual data, it’s not
limited to image-derived vectors. It can equally visualize embed-
dings or metadata from audio or text, represented by appropriate
thumbnails or labels, to explore non-visual meaning spaces. The
CSN is open-source, and we encourage development and extensions.
In conclusion, the CSN is a research tool for exploring, studying
and curating large digital artefact collections that supports multidis-
ciplinary research and understanding of multidimensional meaning
spaces.

CODE AVAILABILITY AND DEMO
The CSN is released as MIT license with code and documentation
available at https://github.com/Collection-Space-Navigator/CSN
A live demo, using the same example data as in the paper figures,
is available at https://collection-space-navigator.github.io/CSN
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